Molecular mass dependence of adsorbed amount and hydrodynamic thickness of polyelectrolyte layers.

نویسندگان

  • Emek Seyrek
  • José Hierrezuelo
  • Amin Sadeghpour
  • Istvan Szilagyi
  • Michal Borkovec
چکیده

Highly charged polyelectrolytes adsorbed on oppositely charged colloidal particles are investigated by electrophoresis and dynamic light scattering. The dependence of the adsorbed amount and of the hydrodynamic layer thickness on the molecular mass and the salt level is analyzed. The adsorbed amount increases with increasing salt level and decreases with increasing molecular mass. The hydrodynamic layer thickness is independent of the molecular mass at low salt levels, but increases with the molecular mass as a power law with an exponent 0.10 ± 0.01 at high salt. The same behavior was observed for different polyelectrolytes and substrates and therefore is suspected to be generic. Due to semi-quantitative agreement with computer simulations carried out by Kong and Muthukumar in 1998, the observed behavior is interpreted with conformational changes of single adsorbed polyelectrolyte chains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyelectrolyte Adsorption and Multilayer Formation

In this chapter, we review our recent theoretical work on the formation of polyelectrolyte multilayers. The first layer is obtained by polyelectrolyte adsorption on a surface with an opposite charge. The adsorbed polyelectrolyte charge is sufficient to invert the charge of the surface. Each subsequent layer is bound to the previous one by the formation of a polyelectrolyte complex. Using a Deby...

متن کامل

Protein binding on polyelectrolyte-treated glass. Effect of structure of adsorbed polyelectrolyte.

Polyelectrolyte adsorption can be used to modify the surface of chromatographic packings in order to make them more suitable for protein separations. We studied the binding of proteins to controlled pore glass (CPG) on which the polycation poly(diallyldimethylammonium chloride) (PDADMAC) was noncovalently immobilized through electrostatic interaction. We found that the selectivity of PDADMAC fo...

متن کامل

‘Exact’ solutions of the full electrokinetic model for soft spherical colloids: Electrophoretic mobility

Numerical solutions of the standard electrokinetic model provide a basis for interpreting a variety of electrokinetic phenomena involving ‘bare’ colloids. However, the model rests on the classical notion of a shear or slipping plane, whose location is unknown when surfaces are coated with permeable polymer. Consequently, an electrokinetic model for ‘soft’, ‘hairy’ or ‘fuzzy’ colloids has been d...

متن کامل

The Effect of Salt Concentration on Adsorption of Low-Charge-Density Polyelectrolytes and Interactions between Polyelectrolyte-Coated Surfaces.

In this investigation surface force, X-ray photoelectron spectroscopy and ellipsometry techniques have been used to study the adsorption of a low-charge-density cationic polyelectrolyte on negatively charged surfaces. It is shown that the low cationicity of this polyelectrolyte induces an adsorption behavior which is limited by steric factors rather than by the substrate surface charge or poten...

متن کامل

Adsorption of polyelectrolytes to like-charged substrates induced by multivalent counterions as exemplified by poly(styrene sulfonate) and silica.

The present study demonstrates that multivalent counterions trigger adsorption of polyelectrolytes on a like-charged substrate. In particular, adsorption of polystyrene sulfonate on silica is studied experimentally in NaCl, MgCl2, and LaCl3 solutions by optical reflectivity. While adsorption is negligible in the presence of Na(+), the polyelectrolyte adsorbs in the presence of Mg(2+) and La(3+)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 28  شماره 

صفحات  -

تاریخ انتشار 2011